SHORT REVIEW Evolution of reproductive isolation in plants
نویسندگان
چکیده
Reproductive isolation is essential for the process of speciation and much has been learned in recent years about the ecology and underlying genetics of reproductive barriers. But plant species are typically isolated not by a single factor, but by a large number of different preand postzygotic barriers, and their potentially complex interactions. This phenomenon has often been ignored to date. Recent studies of the relative importance of different isolating barriers between plant species pairs concluded that prezygotic isolation is much stronger than postzygotic isolation. But studies of the patterns of reproductive isolation in plants did not find that prezygotic isolation evolves faster than postzygotic isolation, in contrast to most animals. This may be due to the multiple premating barriers that isolate most species pairs, some of which may be controlled by few genes of major effect and evolve rapidly, whereas others have a complex genetic architecture and evolve more slowly. Intrinsic postzygotic isolation in plants is correlated with genetic divergence, but some instrinsic postzygotic barriers evolve rapidly and are polymorphic within species. Extrinsic postzygotic barriers are rarely included in estimates of different components of reproductive isolation. Much remains to be learned about ecological and molecular interactions among isolating barriers. The role of reinforcement and reproductive character displacement in the evolution of premating barriers is an open topic that deserves further study. At the molecular level, chromosomal and genic isolation factors may be associated and act in concert to mediate reproductive isolation, but their interactions are only starting to be explored. Heredity (2009) 102, 31–38; doi:10.1038/hdy.2008.69; published online 23 July 2008
منابع مشابه
Review. The strength and genetic basis of reproductive isolating barriers in flowering plants.
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving...
متن کاملThe strength and genetic basis of reproductive isolating barriers in flowering plants
Speciation is characterized by the evolution of reproductive isolation between two groups of organisms. Understanding the process of speciation requires the quantification of barriers to reproductive isolation, dissection of the genetic mechanisms that contribute to those barriers and determination of the forces driving the evolution of those barriers. Through a comprehensive analysis involving...
متن کاملEvolution and Molecular Control of Hybrid Incompatibility in Plants
Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabido...
متن کاملAn agent-based computational model of the evolution of reproductive isolation in populations of digital plants
xiii 1 GENERAL INFORMATION 1 1.
متن کاملWhat does Drosophila genetics tell us about speciation?
Studies of hybrid inviability, sterility and 'speciation genes' in Drosophila have given insight into the genetic changes that result in reproductive isolation. Here, I survey some extraordinary and important advances in Drosophila speciation research. However, 'reproductive isolation' is not the same as 'speciation', and this Drosophila work has resulted in a lopsided view of speciation. In pa...
متن کامل